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Three-dimensional local density of states in a finite two-dimensional photonic crystal
composed of cylinders
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The three-dimensional local density of sta(eBOS), which determines the radiation dynamics of a point
source, is presented here for a finite two-dimensional photonic crystal as a function of space and frequency.
The LDOS is obtained from the dyadic Green’s function, which is calculated exactly using the multipole
method. Maximum suppression in the LDOS occurs at the high frequency edge of the complete two-
dimensional band gap and varies smoothly about this frequency. Macroporous silicon is shown to suppress the
LDOS by one order of magnitude at the center of its air pores.
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In the seminal papers by YablonovitEh] and Johri2], it  infinite length [16]. This was used to calculate the two-
was proposed that photonic crystédRC9 can inhibit spon- dimensional(2D) LDOS, which applies to an infinite line
taneous emission and localize light by suppressing the pheource, for a finite cluster of cylinders. Thus, all LDOS re-
tonic density of state€DOS). Subsequent work using simple sults published to date are for idealized systems.
models for the DOS has predicted other interesting quantum Crucial to reconciling experiment with theory is the cal-
optical phenomena, including an anomalous Lamb shifeulation of the 3D LDOS, which applies to a pointlike
[3,4]. In the usual Markovian approximation, the spontane-Source, in realistic PCs. The 3D LDOS is presented here for
ous emission decay rate is proportional to the DOS. A suffi& 2D PC composed of a finite cluster of circular cylinders of
ciently sharp change in the DOS can lead to non-Markoviadnfinite length. The treatment of a dyadic problem in the 3D
effects[5], though there is some contention as to whether th&ase constitutes a major e>rtensron_ of the scalar p“’b'em n
models adopted are realisfig]. Despite the prospect of con- the 2D case, requiring an integration over all propagation
trolling spontaneous emission, theory and experiment on P onstants of the fields using a suitable complex contour.

has been largely confined to band structure calculations, an(g{mth 2D PCs do not have the favored complete band gap

. o . 3D PCs, they hold substantial theoretifaf| and experi-
reflection and transmission spectiag., Ref.[7]). Experi- ‘mental[18,19 interest due to the relative ease of their fab-

ments on spontaneous emission have been conducted usifgaion The particular 2D PC modeled here is macroporous

luminescent dye impregnated in colloidal cryste# and  gjjicon[19]. This 2D PC is composed of a triangular array of
opals[9], but the interpretation of the results has been IM-cylindrical air pores in a silicon background, with a pore

pedeq by a lack of applicable theq[rg]. Furthermore, these separation of 1.:m and an aspect ratiépore height to

experiments probe the DOS, which characterizes spontang@iametey of 100-500. Reflection and transmission spectra

ous emission averaged over a unit cell. PCs redistribute thenow that this PC is fabricated with a robust 2D band gap.

DOS both in frequency and space, and the spatially resolvedihis makes it an essentially ideal 2D PC, to which the results

or local density of stated DOS) [10,11], is the fundamental obtained here are directly applicable.

guantity that determines quantum optical behavior. The LDOSp(r,k) is determined for a dipole point source
Probing the LDOS requires measuring the fluorescencérom the electric Green’s functiolGE, using[20]

from a pointlike sourcée.g., luminescent molecylat some

location inside a finite-sized PC. The LDOS can be calcu- 2k

lated in infinite PCs using the Bloch methf#]11,13. Spon- p(r,k)y=— —Zlm{Tr[GE(r,r;k)]}, (on]

taneous emission rates in finite-sized PCs can be obtained mC

using the finite-difference time-domain methtB]. How-

ever, this method works in the time domain, and inferring thewhere k=2z/\ is the free space wave number. In a full

fundamental LDOS from the emission rates must be justifiedvectorial treatment of the fields, Green’s functions are in dy-

The preferred approach is via Green's function. Green'®dic form[21], and the wave equations for electromagnetic

function can be obtained in complex structures by solvingEM) Green’s functions are

Dyson’s equatiori14], but calculating the LDOS in PCs us-

ing this method has been limited to finite one-dimensional VXV XG(r,r")=k*n(r)>G&(r,r")=—14(r-r’),

structureg 15]. It was recently demonstrated that a multipole (2

method can be used to calculate Green’s function efficiently

in an arbitrary arrangement of aligned circular cylinders of VXV XGM(r,r")—k?n (r)2GH(r,r")=—-vVxI 8(r—r’),

where n(r)=n, is the background refractive index and
*Email address: fussell@physics.usyd.edu.au n(r)=n, inside the cylinders.
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Equation(2) is solved in cylindrical coordinatep(¢,z),
with the cylinder axes aligned with trecoordinate. A Fou-
rier transformation in the coordinate is first applied, giving
wave equations for conical propagation. These are evaluated
exactly using the multipole methd@2]. A brief summary is
given for a source in the background medium, and follows
similarly for a source inside a cylinder. For a source in the

principal directioru, thez components of the fields are given

by 035
, 0.3
(V2+K2)V,=Dyd(p—p'), 3 0 02 04 06 08 1
Bd/2rn
where Ve {E,H}, V,=GY(p.p'), k,=k*n’—p2, g is , _
the propagation constant in tzecoordinate, and FIG. 1. Out-of-plane band structure showing the gap region

emanating from the complete 2D band dapaded and the bounds
iB of the region from the TE band gapolid lineg. Parameters are
DE=6,,+ ﬁv.ﬁ and D"'=7. v xu, np=3.4 with a;/d=0.45 (dark gray anda, /d=0.48 (light gray).
ken(r) Dashed lines show where the complete gap region covers the widest
] . ) o ) range of propagation angles.
are simple differential operators. Equati@® is solved using
a multipole expansion, whereby the fields in the local coorinyersion; and(3) convergence is superior to the alternative
dinates of théth cylinder are expressed in terms of cylindri- methods. Thus, the multipole method can be used to solve
cal harmonics efficiently wave equations in an arbitrary arrangement of cir-
o cular cylinders, but for structures that are finite in they(
Vie NG +BYIHD (K eMiaifz (4 plane, is res_trlcted to cyllnd(_ars pf |_nf|n|te Iength.
m:E—oc [AmIm(Kop1) B Him (k1) ] @ The dyadic Green’s function is finally obtained by apply-
_ . ~ing an inverse Fourier transformation, amounting to an inte-
Green’s second theorem is used to derive the global fielgration over allg in the field expansions. The integral has

expansion poles on the real axis @= *k n, and near the axis in the
) N w range k min(n,,n)<|Bl<kmax(y,,n) corresponding to
i S . ;
__ T avig@ VI (1) im g bound and leaky mod€g®2]. These are addressed using a
Vu 4D“{H0 (kPPS)}Jr;l m;—oc BumMm (Kop)€ % ontour integral in compleyg space. For Rg8} >0, causal-
(5) ity is enforced, after settingg=R€’ on a contour of the
form
which applies throughout the background medium. Graf’s
addition theorerr[23] is. gsgd to enforce the consistency of C={B|0<R<R’,0'1U{B|R’,6' < =<0}
Egs.(4) and(5) in the vicinity of thelth cylinder and yields
the Rayleigh identity U{B|R'<R<x,0}, (7)
S with '~ —7/4 andR’~ 1.1k max(y,n) found to optimize
Alm= KL’erq:%ﬂ p;x SmiBup (6)  convergence. A similar contour above the axis is used for
’ Re[B}<0.
where Macroporous silicon, with infrared refractive index,
' =3.4, is considered with cylinder radii &f;/d=0.45 and
Sip=H® (K,pg) ! (P~ %, a,/d=0.48, whered is the lattice constarjtL9]. The impor-

tant features of the relevant 3D out-of-plane band structure

andK/ . is the source term composed of Bessel functionsare shown in Fig. 1. For 2D in-plane propagation, the EM
The Rayleigh identity(6) reflects the observation that the fields separate into a transverse electfiE) and transverse
local converging fieldA,, is due the diverging field from all magnetic(TM) mode. For both structures, the TM band gap
other source bodiesB(, ,K,). lies inside the TE band gap forming a complete 2D band gap.

The field coefficients A,,,B,,) are also linked by the For out-of-plane propagation, the modes exhibit a hybrid
boundary conditions at the cylinder surfacdeg?], which  TE-TM nature due to the boundary conditions, and the com-
when combined with Eq6) form a complete linear system. plete 2D gap is projected into higher frequencies, indicated
By employing a multipole formulation consistent with the by the shaded regions in the figure. Though there is no com-
geometry of the problem, the boundary conditions are enplete 3D band gap, the gap region covers a broad range of
forced analytically rather than through a Fourier series. Thigpropagation angles at the high frequency edge of the com-
has three significant benefit&t) a simple semianalytic ex- plete 2D band gap. The figure also shows the bounds of the
pression for the fields is obtaine®) an elegant identity is gap region emanating from the TE band gap. Note that for a
obtained, from which the eigenvalue problem can be solvedwider in-plane gap, the corresponding out-of-plane gap re-
and the field coefficients determined with a single-matrixgion covers a wider range of propagation angles.
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FIG. 3. The LDOS along the axis for different sized clusters.

x/d The section of Fig. 2 N.=61) is shown(bold), along with N

=1 (dashed, 7 (dotted, 37 (dash, dot, longdash, dotjed91l

Log,..[%] _ ‘ (solid), otherwise using the same parameters.
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only small clusters need be considered in either theoretical or
experimental work.

FIG. 2. The 3D LDOS taken across the plane of a hexagonal

The frequency dependence of the LDOS at the center of

cluster of N;=61 (4 ring9 air voids in macroporous silicon with the structure for both, /d=0.45 andg, /d=0.48 is shown in

refractive indexn,=3.4. The cylinder radius ig, /d=0.45 and the
wave number i&d/27=0.442. The LDOS is normalized to the free
space valugy=k?/ 7?c.

Fig. 4. Suppression with respect to vacuum is strongest at the
top of the complete 2D band gap. The complete gap is widest
ata,/d=0.48, which produces maximum suppression of just

The 3D LDOS across the plane of a finite hexagonalinder one order of magnitudéog,o(p/po) = —0.90]. How-
sample of macroporous silicon k@/27w=0.442, a/d ever, higher suppression of just over one order of magnitude
—0.45) is shown in Fig. 2. The figure was produced with!!0910(p/po)=—1.02 can be achieved a,/d=0.45, for
46 figure accuracy and a resolution of 400 points per unitvhich the TE gap is much wider. The potential to obtain
cell using 12 h of computation time on one 2 GHz Pentiumstrong suppression in this class of PCs is limited by the ab-
IV CPU. The spatial distribution of the LDOS is uniform Sence of a complete 3D band gap. The width of the complete
inside the two outer hexagonal rings of cylinders, taking the?? band gap increases rapidly with the refractive index con-
same form in each unit cell. This is in contrast to the 2D{rast[17], but the width of the TE gap is also clearly impor-
LDOS in a finite 2D cluster of cylinder€ 6], which exhibits tant, and it is not obwoys that higher contrast would give
a variety of patterns in the spatial distribution, and rapidmUCh stronger suppression. .
variations in these patterns near a band edge. The out-of- AS @ function of frequency, the LDOS is smooth and
plane band structure draws in the projected 2D band stru@Symmetric about the top edge of the band gap, with a rela-
ture over a range of frequencies, which dilutes these strikingVely sharp change on the high frequency side. This is a
features. At the centers of the interior cylinders, the LDOS isconsequence of the upward sloping band structure and the
suppressed by one order of magnitude from its value in fre&PP €dge of the gap region having a flatter trajectory than the

space. The LDOS then increases smoothly as the cylindé}o

ttom edge. The change in the LDOS is sharpestfod

walls are approached, and is slightly enhanced in the back= 0-45, where its increase kylog,(p) =0.89 occurs over a
ground. In the two outer rings, the suppression is smallefrequency range of 0.015¢&/d), with a second smaller
and is offset towards the center of the structure. Outside th&/mPp at the TE band edge. Fay/d=0.48, where the top TE

structure, the LDOS rapidly attains the valpie nypq that it
holds in a homogeneous medium with the refractive index of
the background.

The dependence of the LDOS on cluster size is shown in
Fig. 3. For a single cylinder, the difference inside and outside
the cylinder simply reflects the refractive index contrast. As
the number of rings increases, the Bragg effect becomes sig-
nificant, causing stronger suppression inside the cylinders.
Maximum suppression is limited to one order of magnitude,
and suppression in the interior cylinders quickly saturates.
This is in contrast to a complete gap structure, where sup-
pression grows exponentially with cluster sj26]. Note that
the LDOS is essentially the same in a ring with a given offset

logyol0/pol

0.2 0.3

0.4
kdj2n

0.5 0.6

from the cluster edge, irrespective of cluster size, and ceases FIG. 4. The LDOS vs frequency at the center of the central
to change significantly inside the two outer rings. Thus, allcylinder forN,=37, witha, /d=0.45(bold) anda, /d=0.48(thin).
features of the spatial distribution of the LD@Big. 2) are  The analytic model(8) is shown with w,=0.52,h=0.93,¢,
reproduced in a cluster containing three or more rings, ané4 for w<w., €,=30 for >, (dotted.
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and TM band edges are contiguous, the jump is larger at over In conclusion, an accurate and efficient method for calcu-
one order of magnitudpA log;¢(p) = 1.15], but less abrupt, lating the LDOS in 2D PCs composed of cylinders has been
occurring over a frequency range of 0.044(@d). Ford  demonstrated. The importance of the size of the structure and
=1.5 um [19], the band edge wavelengthis\ =3.0 um, the spatial and frequency variation of the LDOS were inves-
and these jumps occur over wavelength rangesAaf  tigated in macroporous silicon. Spontaneous emission can be
=75 nm and 160 nm, respectively. suppressed by a significant one order of magnitude and rap-
The radiation dynamics in a pseudogap PC have previidly saturates with cluster size, in contrast to the exponential
ously been modeled analytically using a Gaussian functiolecrease in the 2D LDOS. An asymmetric band edge model

for the LDOS[24]. A similar asymmetric model can be ap- is appropriate for the 3D LDOS in a 2D PC, but the band

plied to a 2D PQFig. 4), taking the form edge jump is insufficient to lead to non-Markovian behavior.
Because the multipole method applies to an arbitrary ar-
p(w)=po(w){l—hexq - (e,(0—w)*1} (8  rangement of cylinders, it can be used to examine the sensi-

where w, is the band edge frequenciy describes the tivity of the LDOS to disorder, though this is outside the
strength of the suppression, aag its width. To model the

scope of this work. The EM Green’s functions can also be

: . . . used to obtain other important quantities such as the LDOS
strong asymmetry in the LDOS,, is a step function with a
much larger value fow > w. than foro<w,. In this model,

for a particular dipole orientation, or projected LDOS, and
the LDOS is sufficiently smooth about the band edge for the

the Lamb shift.
usual Markovian assumption to apply. The Australian Research Council supported this work.
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