
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 67, 045601~R! ~2003!
Three-dimensional local density of states in a finite two-dimensional photonic crystal
composed of cylinders
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The three-dimensional local density of states~LDOS!, which determines the radiation dynamics of a point
source, is presented here for a finite two-dimensional photonic crystal as a function of space and frequency.
The LDOS is obtained from the dyadic Green’s function, which is calculated exactly using the multipole
method. Maximum suppression in the LDOS occurs at the high frequency edge of the complete two-
dimensional band gap and varies smoothly about this frequency. Macroporous silicon is shown to suppress the
LDOS by one order of magnitude at the center of its air pores.
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In the seminal papers by Yablonovitch@1# and John@2#, it
was proposed that photonic crystals~PCs! can inhibit spon-
taneous emission and localize light by suppressing the p
tonic density of states~DOS!. Subsequent work using simpl
models for the DOS has predicted other interesting quan
optical phenomena, including an anomalous Lamb s
@3,4#. In the usual Markovian approximation, the spontan
ous emission decay rate is proportional to the DOS. A su
ciently sharp change in the DOS can lead to non-Markov
effects@5#, though there is some contention as to whether
models adopted are realistic@6#. Despite the prospect of con
trolling spontaneous emission, theory and experiment on
has been largely confined to band structure calculations,
reflection and transmission spectra~e.g., Ref.@7#!. Experi-
ments on spontaneous emission have been conducted
luminescent dye impregnated in colloidal crystals@8# and
opals @9#, but the interpretation of the results has been i
peded by a lack of applicable theory@9#. Furthermore, these
experiments probe the DOS, which characterizes spont
ous emission averaged over a unit cell. PCs redistribute
DOS both in frequency and space, and the spatially resol
or local density of states~LDOS! @10,11#, is the fundamenta
quantity that determines quantum optical behavior.

Probing the LDOS requires measuring the fluoresce
from a pointlike source~e.g., luminescent molecule! at some
location inside a finite-sized PC. The LDOS can be cal
lated in infinite PCs using the Bloch method@6,11,12#. Spon-
taneous emission rates in finite-sized PCs can be obta
using the finite-difference time-domain method@13#. How-
ever, this method works in the time domain, and inferring
fundamental LDOS from the emission rates must be justifi
The preferred approach is via Green’s function. Gree
function can be obtained in complex structures by solv
Dyson’s equation@14#, but calculating the LDOS in PCs us
ing this method has been limited to finite one-dimensio
structures@15#. It was recently demonstrated that a multipo
method can be used to calculate Green’s function efficie
in an arbitrary arrangement of aligned circular cylinders
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infinite length @16#. This was used to calculate the two
dimensional~2D! LDOS, which applies to an infinite line
source, for a finite cluster of cylinders. Thus, all LDOS r
sults published to date are for idealized systems.

Crucial to reconciling experiment with theory is the ca
culation of the 3D LDOS, which applies to a pointlik
source, in realistic PCs. The 3D LDOS is presented here
a 2D PC composed of a finite cluster of circular cylinders
infinite length. The treatment of a dyadic problem in the 3
case constitutes a major extension of the scalar problem
the 2D case, requiring an integration over all propagat
constants of the fields using a suitable complex conto
Though 2D PCs do not have the favored complete band
of 3D PCs, they hold substantial theoretical@17# and experi-
mental@18,19# interest due to the relative ease of their fa
rication. The particular 2D PC modeled here is macropor
silicon @19#. This 2D PC is composed of a triangular array
cylindrical air pores in a silicon background, with a po
separation of 1.5mm and an aspect ratio~pore height to
diameter! of 1002500. Reflection and transmission spec
show that this PC is fabricated with a robust 2D band g
This makes it an essentially ideal 2D PC, to which the res
obtained here are directly applicable.

The LDOSr(r ,k) is determined for a dipole point sourc
from the electric Green’s function,GE, using@20#

r~r ,k!52
2k

pc2
Im$Tr@GE~r ,r ;k!#%, ~1!

where k52p/l is the free space wave number. In a fu
vectorial treatment of the fields, Green’s functions are in d
adic form @21#, and the wave equations for electromagne
~EM! Green’s functions are

“3“3GE~r ,r 8!2k2n~r !2 GE~r ,r 8!52I d~r2r 8!,
~2!

“3“3GH~r ,r 8!2k2n ~r !2GH~r ,r 8!52“3I d~r2r 8!,

where n(r )5nb is the background refractive index an
n(r )5nl inside the cylinders.
©2003 The American Physical Society01-1
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Equation~2! is solved in cylindrical coordinates (r,f,z),
with the cylinder axes aligned with thez coordinate. A Fou-
rier transformation in thez coordinate is first applied, giving
wave equations for conical propagation. These are evalu
exactly using the multipole method@22#. A brief summary is
given for a source in the background medium, and follo
similarly for a source inside a cylinder. For a source in t
principal directionũ, thezcomponents of the fields are give
by

~“r
21kr

2!Vu5Du
Vd~r2r8!, ~3!

where VP$E,H%, Vu5G̃zu
V (r,r8), kr5Ak2 n22b2, b is

the propagation constant in thez coordinate, and

Du
E5dzu1

ib

k2n~r !2
“•ũ and Du

H5 z̃•“3ũ,

are simple differential operators. Equation~3! is solved using
a multipole expansion, whereby the fields in the local co
dinates of thel th cylinder are expressed in terms of cylind
cal harmonics

Vl5 (
m52`

`

@Am
VlJm~krr l !1Bm

VlHm
(1)~krr l !#e

imf leibz. ~4!

Green’s second theorem is used to derive the global fi
expansion

Vu52
i

4
Du

V$H0
(1)~krrs!%1(

l 51

Nc

(
m52`

`

Bum
Vl Hm

(1)~krr l !e
im f l,

~5!

which applies throughout the background medium. Gra
addition theorem@23# is used to enforce the consistency
Eqs.~4! and~5! in the vicinity of thel th cylinder and yields
the Rayleigh identity

Aum
Vl 5Kum

V 1 (
q51,qÞ l

Nc

(
p52`

`

Smp
lq Bup

Vq , ~6!

where

Smp
lq 5Hm2p

(1) ~krrq!ei (p2m)fq,

and Kum
V is the source term composed of Bessel functio

The Rayleigh identity~6! reflects the observation that th
local converging fieldAm is due the diverging field from al
other source bodies (Bm ,Km).

The field coefficients (Am ,Bm) are also linked by the
boundary conditions at the cylinder surfaces@22#, which
when combined with Eq.~6! form a complete linear system
By employing a multipole formulation consistent with th
geometry of the problem, the boundary conditions are
forced analytically rather than through a Fourier series. T
has three significant benefits:~1! a simple semianalytic ex
pression for the fields is obtained;~2! an elegant identity is
obtained, from which the eigenvalue problem can be solv
and the field coefficients determined with a single-mat
04560
ed

s
e

-

ld

s

.

-
is

d,

inversion; and~3! convergence is superior to the alternati
methods. Thus, the multipole method can be used to s
efficiently wave equations in an arbitrary arrangement of c
cular cylinders, but for structures that are finite in the (x,y)
plane, is restricted to cylinders of infinite length.

The dyadic Green’s function is finally obtained by appl
ing an inverse Fourier transformation, amounting to an in
gration over allb in the field expansions. The integral ha
poles on the real axis atb56k n, and near the axis in the
range k min(nb ,nl),ubu,kmax(nb ,nl) corresponding to
bound and leaky modes@22#. These are addressed using
contour integral in complex-b space. For Re$b%.0, causal-
ity is enforced, after settingb5Reiu, on a contour of the
form

C5$bu0<R<R8,u8%ø$buR8,u8<u<0%

ø$buR8<R,`,0%, ~7!

with u8'2p/4 andR8'1.1k max(nb ,nl) found to optimize
convergence. A similar contour above the axis is used
Re$b%,0.

Macroporous silicon, with infrared refractive indexnb
53.4, is considered with cylinder radii ofal /d50.45 and
al /d50.48, whered is the lattice constant@19#. The impor-
tant features of the relevant 3D out-of-plane band struct
are shown in Fig. 1. For 2D in-plane propagation, the E
fields separate into a transverse electric~TE! and transverse
magnetic~TM! mode. For both structures, the TM band g
lies inside the TE band gap forming a complete 2D band g
For out-of-plane propagation, the modes exhibit a hyb
TE-TM nature due to the boundary conditions, and the co
plete 2D gap is projected into higher frequencies, indica
by the shaded regions in the figure. Though there is no c
plete 3D band gap, the gap region covers a broad rang
propagation angles at the high frequency edge of the c
plete 2D band gap. The figure also shows the bounds of
gap region emanating from the TE band gap. Note that fo
wider in-plane gap, the corresponding out-of-plane gap
gion covers a wider range of propagation angles.

FIG. 1. Out-of-plane band structure showing the gap reg
emanating from the complete 2D band gap~shaded! and the bounds
of the region from the TE band gap~solid lines!. Parameters are
nb53.4 with al /d50.45 ~dark gray! and al /d50.48 ~light gray!.
Dashed lines show where the complete gap region covers the w
range of propagation angles.
1-2
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The 3D LDOS across the plane of a finite hexago
sample of macroporous silicon (kd/2p50.442, al /d
50.45) is shown in Fig. 2. The figure was produced w
426 figure accuracy and a resolution of 400 points per u
cell using 12 h of computation time on one 2 GHz Pentiu
IV CPU. The spatial distribution of the LDOS is uniform
inside the two outer hexagonal rings of cylinders, taking
same form in each unit cell. This is in contrast to the 2
LDOS in a finite 2D cluster of cylinders@16#, which exhibits
a variety of patterns in the spatial distribution, and rap
variations in these patterns near a band edge. The ou
plane band structure draws in the projected 2D band st
ture over a range of frequencies, which dilutes these strik
features. At the centers of the interior cylinders, the LDOS
suppressed by one order of magnitude from its value in
space. The LDOS then increases smoothly as the cylin
walls are approached, and is slightly enhanced in the ba
ground. In the two outer rings, the suppression is sma
and is offset towards the center of the structure. Outside
structure, the LDOS rapidly attains the valuer5nbr0 that it
holds in a homogeneous medium with the refractive index
the background.

The dependence of the LDOS on cluster size is show
Fig. 3. For a single cylinder, the difference inside and outs
the cylinder simply reflects the refractive index contrast.
the number of rings increases, the Bragg effect becomes
nificant, causing stronger suppression inside the cylind
Maximum suppression is limited to one order of magnitu
and suppression in the interior cylinders quickly satura
This is in contrast to a complete gap structure, where s
pression grows exponentially with cluster size@16#. Note that
the LDOS is essentially the same in a ring with a given off
from the cluster edge, irrespective of cluster size, and ce
to change significantly inside the two outer rings. Thus,
features of the spatial distribution of the LDOS~Fig. 2! are
reproduced in a cluster containing three or more rings,

FIG. 2. The 3D LDOS taken across the plane of a hexago
cluster ofNc561 ~4 rings! air voids in macroporous silicon with
refractive indexnb53.4. The cylinder radius isal /d50.45 and the
wave number iskd/2p50.442. The LDOS is normalized to the fre
space valuer05k2/p2c.
04560
l

it

e

of-
c-
g
s
e
er
k-
r,
e

f

in
e
s
ig-
s.
,
s.
p-

t
es
ll

d

only small clusters need be considered in either theoretica
experimental work.

The frequency dependence of the LDOS at the cente
the structure for bothal /d50.45 andal /d50.48 is shown in
Fig. 4. Suppression with respect to vacuum is strongest a
top of the complete 2D band gap. The complete gap is wid
at al /d50.48, which produces maximum suppression of j
under one order of magnitude@ log10(r/r0)520.90#. How-
ever, higher suppression of just over one order of magnit
@ log10(r/r0)521.02# can be achieved atal /d50.45, for
which the TE gap is much wider. The potential to obta
strong suppression in this class of PCs is limited by the
sence of a complete 3D band gap. The width of the comp
2D band gap increases rapidly with the refractive index c
trast@17#, but the width of the TE gap is also clearly impo
tant, and it is not obvious that higher contrast would gi
much stronger suppression.

As a function of frequency, the LDOS is smooth an
asymmetric about the top edge of the band gap, with a r
tively sharp change on the high frequency side. This i
consequence of the upward sloping band structure and
top edge of the gap region having a flatter trajectory than
bottom edge. The change in the LDOS is sharpest foral /d
50.45, where its increase byD log10(r)50.89 occurs over a
frequency range of 0.015(2pc/d), with a second smaller
jump at the TE band edge. Foral /d50.48, where the top TE

al

FIG. 3. The LDOS along thex axis for different sized clusters
The section of Fig. 2 (Nc561) is shown~bold!, along with Nc

51 ~dashed!, 7 ~dotted!, 37 ~dash, dot, longdash, dotted!, 91
~solid!, otherwise using the same parameters.

FIG. 4. The LDOS vs frequency at the center of the cen
cylinder forNc537, withal /d50.45~bold! andal /d50.48~thin!.
The analytic model~8! is shown with vc50.52,h50.93,ev

54 for v,vc , ev530 for v.vc ~dotted!.
1-3
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and TM band edges are contiguous, the jump is larger at o
one order of magnitude@D log10(r)51.15#, but less abrupt,
occurring over a frequency range of 0.044(2pc/d). For d
51.5 mm @19#, the band edge wavelength is;l53.0 mm,
and these jumps occur over wavelength ranges ofDl
575 nm and 160 nm, respectively.

The radiation dynamics in a pseudogap PC have pr
ously been modeled analytically using a Gaussian func
for the LDOS@24#. A similar asymmetric model can be ap
plied to a 2D PC~Fig. 4!, taking the form

r~v!5r0~v!$12h exp@2„ev~v2vc!…
2#%, ~8!

where vc is the band edge frequency,h describes the
strength of the suppression, andev its width. To model the
strong asymmetry in the LDOS,ev is a step function with a
much larger value forv.vc than forv,vc . In this model,
the LDOS is sufficiently smooth about the band edge for
usual Markovian assumption to apply.
tt.
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In conclusion, an accurate and efficient method for cal
lating the LDOS in 2D PCs composed of cylinders has be
demonstrated. The importance of the size of the structure
the spatial and frequency variation of the LDOS were inv
tigated in macroporous silicon. Spontaneous emission ca
suppressed by a significant one order of magnitude and
idly saturates with cluster size, in contrast to the exponen
decrease in the 2D LDOS. An asymmetric band edge mo
is appropriate for the 3D LDOS in a 2D PC, but the ba
edge jump is insufficient to lead to non-Markovian behavi
Because the multipole method applies to an arbitrary
rangement of cylinders, it can be used to examine the se
tivity of the LDOS to disorder, though this is outside th
scope of this work. The EM Green’s functions can also
used to obtain other important quantities such as the LD
for a particular dipole orientation, or projected LDOS, a
the Lamb shift.

The Australian Research Council supported this work.
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